23 research outputs found

    Best Practices in Debugging Kepler Workflows

    Get PDF
    AbstractIn this paper we present various techniques related to Kepler development, debugging, and JVM customisation. We highlight some aspects of development process that may help people to perform better while working with Kepler (especially in case they develop new components for the Kepler platform). We present knowledge and ideas that were gained over the time while working with Kepler tools throughout various projects and different applications of Kepler into existing environments. These ideas are presented for the sake of saving time and effort by other people who just start their experience with Kepler project

    Running Simultaneous Kepler Sessions for the Parallelization of Parametric Scans and Optimization Studies Applied to Complex Workflows

    Get PDF
    AbstractIn this paper we present an approach taken to run multiple Kepler sessions at the same time. This kind of execution is one of the requirements for Integrated Tokamak Modelling platform developed by the Nuclear Fusion community within the context of EUROFusion project[2]. The platform is unique and original: it entails the development of a comprehensive and completely generic tokamak simulator including both the physics and the machine, which can be applied for any fusion device. All components are linked inside workflows. This approach allows complex coupling of various algorithms while at the same time provides consistency. Workflows are composed of Kepler and Ptolemy II elements as well as set of the native libraries written in various languages (Fortran, C, C++). In addition to that, there are Python based components that are used for visualization of results as well as for pre/post processing. At the bottom of all these components there is a database layer that may vary between software releases, and require different version of access libraries. The community is using shared virtual research environment to prepare and execute workflows. All these constraints make running multiple Kepler sessions really challenging. However, ability to run numerous sessions in parallel is a must - to reduce computation time and to make it possible to run released codes while working with new software at the same time. In this paper we present our approach to solve this issue and examples that show its correctness

    INDIGO-DataCloud: A data and computing platform to facilitate seamless access to e-infrastructures

    Get PDF
    This paper describes the achievements of the H2020 project INDIGO-DataCloud. The project has provided e-infrastructures with tools, applications and cloud framework enhancements to manage the demanding requirements of scientific communities, either locally or through enhanced interfaces. The middleware developed allows to federate hybrid resources, to easily write, port and run scientific applications to the cloud. In particular, we have extended existing PaaS (Platform as a Service) solutions, allowing public and private e-infrastructures, including those provided by EGI, EUDAT, and Helix Nebula, to integrate their existing services and make them available through AAI services compliant with GEANT interfederation policies, thus guaranteeing transparency and trust in the provisioning of such services. Our middleware facilitates the execution of applications using containers on Cloud and Grid based infrastructures, as well as on HPC clusters. Our developments are freely downloadable as open source components, and are already being integrated into many scientific applications

    LCS-TA to identify similar fragments in RNA 3D structures

    No full text
    Abstract Background In modern structural bioinformatics, comparison of molecular structures aimed to identify and assess similarities and differences between them is one of the most commonly performed procedures. It gives the basis for evaluation of in silico predicted models. It constitutes the preliminary step in searching for structural motifs. In particular, it supports tracing the molecular evolution. Faced with an ever-increasing amount of available structural data, researchers need a range of methods enabling comparative analysis of the structures from either global or local perspective. Results Herein, we present a new, superposition-independent method which processes pairs of RNA 3D structures to identify their local similarities. The similarity is considered in the context of structure bending and bonds’ rotation which are described by torsion angles. In the analyzed RNA structures, the method finds the longest continuous segments that show similar torsion within a user-defined threshold. The length of the segment is provided as local similarity measure. The method has been implemented as LCS-TA algorithm (Longest Continuous Segments in Torsion Angle space) and is incorporated into our MCQ4Structures application, freely available for download from http://www.cs.put.poznan.pl/tzok/mcq/ . Conclusions The presented approach ties torsion-angle-based method of structure analysis with the idea of local similarity identification by handling continuous 3D structure segments. The first method, implemented in MCQ4Structures, has been successfully utilized in RNA-Puzzles initiative. The second one, originally applied in Euclidean space, is a component of LGA (Local-Global Alignment) algorithm commonly used in assessing protein models submitted to CASP. This unique combination of concepts implemented in LCS-TA provides a new perspective on structure quality assessment in local and quantitative aspect. A series of computational experiments show the first results of applying our method to comparison of RNA 3D models. LCS-TA can be used for identifying strengths and weaknesses in the prediction of RNA tertiary structures

    New models and algorithms for RNA pseudoknot order assignment

    No full text
    The pseudoknot is a specific motif of the RNA structure that highly influences the overall shape and stability of a molecule. It occurs when nucleotides of two disjoint single-stranded fragments of the same chain, separated by a helical fragment, interact with each other and form base pairs. Pseudoknots are characterized by great topological diversity, and their systematic description is still a challenge. In our previous work, we have introduced the pseudoknot order: a new coefficient representing the topological complexity of the pseudoknotted RNA structure. It is defined as the minimum number of base pair set decompositions, aimed to obtain the unknotted RNA structure. We have suggested how it can be useful in the interpretation and understanding of a hierarchy of RNA folding. However, it is not trivial to unambiguously identify pseudoknots and determine their orders in an RNA structure. Therefore, since the introduction of this coefficient, we have worked on the method to reliably assign pseudoknot orders in correspondence to the mechanisms that control the biological process leading to their formation in the molecule. Here, we introduce a novel graph coloring-based model for the problem of pseudoknot order assignment. We show a specialized heuristic operating on the proposed model and an alternative integer programming algorithm. The performance of both approaches is compared with that of state-of-the-art algorithms which so far have been most efficient in solving the problem in question. We summarize the results of computational experiments that evaluate our new methods in terms of classification quality on a representative data set originating from the non-redundant RNA 3D structure repository

    RNAthor - fast, accurate normalization, visualization and statistical analysis of RNA probing data resolved by capillary electrophoresis.

    No full text
    RNAs adopt specific structures to perform their functions, which are critical to fundamental cellular processes. For decades, these structures have been determined and modeled with strong support from computational methods. Still, the accuracy of the latter ones depends on the availability of experimental data, for example, chemical probing information that can define pseudo-energy constraints for RNA folding algorithms. At the same time, diverse computational tools have been developed to facilitate analysis and visualization of data from RNA structure probing experiments followed by capillary electrophoresis or next-generation sequencing. RNAthor, a new software tool for the fully automated normalization of SHAPE and DMS probing data resolved by capillary electrophoresis, has recently joined this collection. RNAthor automatically identifies unreliable probing data. It normalizes the reactivity information to a uniform scale and uses it in the RNA secondary structure prediction. Our web server also provides tools for fast and easy RNA probing data visualization and statistical analysis that facilitates the comparison of multiple data sets. RNAthor is freely available at http://rnathor.cs.put.poznan.pl/

    New functionality of RNAComposer: an application to shape the axis of miR160 precursor structure

    No full text
    RNAComposer is a fully automated, web-interfaced system for RNA 3D structure prediction, freely available at http://rnacomposer.cs.put.poznan.pl/ and http://rnacomposer.ibch.poznan.pl/. Its main components are: manually curated database of RNA 3D structure elements, highly efficient computational engine and user-friendly web application. In this paper, we demonstrate how the latest additions to the system allow the user to significantly affect the process of 3D model composition on several computational levels. Although in general our method is based on the knowledge of secondary structure topology, currently the RNAComposer offers a choice of six incorporated programs for secondary structure prediction. It also allows to apply a conditional search in the database of 3D structure elements and introduce user-provided elements into the final 3D model. This new functionality contributes to a significant improvement of the predicted 3D model reliability and it facilitates a better model adjustment to the experimental data. This is exemplified based on the RNAComposer application for modelling of the 3D structures of precursors of the miR160 family members
    corecore